Ecuación De Onda
La ecuación de onda es el ejemplo prototipo de una ecuación diferencial parcial hiperbólica. En su forma más elemental, la ecuación de onda hace referencia a un escalar u que satisface:
Donde es el laplaciano y donde c es una constante equivalente a la velocidad de propagación de la onda. Para una onda sonora en el aire a 20 °C, esta constante es de cerca de 343 m/s (véase velocidad del sonido). Para una cuerda vibrante, la velocidad puede variar mucho dependiendo de la densidad lineal de la cuerda y su tensión. Para un resorte de espiral (un slinky) puede ser tan lento como un metro por segundo.
Un modelo más realista de la ecuación diferencial para ondas permite que la velocidad de propagación de la onda varíe con la frecuencia de la onda, a este fenómeno se le conoce como dispersión. En este caso, c deberá ser remplazado por la velocidad de fase:
Otra corrección común en sistemas realistas es que la velocidad puede depender también de la amplitud de la onda, lo que nos lleva a una ecuación de onda no lineal:
No hay comentarios:
Publicar un comentario